Exploration for Multi-task Reinforcement Learning with Deep Generative Models
نویسندگان
چکیده
Exploration in multi-task reinforcement learning is critical in training agents to deduce the underlying MDP. Many of the existing exploration frameworks such as E, Rmax, Thompson sampling assume a single stationary MDP and are not suitable for system identification in the multi-task setting. We present a novel method to facilitate exploration in multi-task reinforcement learning using deep generative models. We supplement our method with a low dimensional energy model to learn the underlying MDP distribution and provide a resilient and adaptive exploration signal to the agent. We evaluate our method on a new set of environments and provide intuitive interpretation of our results.
منابع مشابه
EX2: Exploration with Exemplar Models for Deep Reinforcement Learning
Deep reinforcement learning algorithms have been shown to learn complex tasks using highly general policy classes. However, sparse reward problems remain a significant challenge. Exploration methods based on novelty detection have been particularly successful in such settings but typically require generative or predictive models of the observations, which can be difficult to train when the obse...
متن کاملFederated Control with Hierarchical Multi-Agent Deep Reinforcement Learning
We present a framework combining hierarchical and multi-agent deep reinforcement learning approaches to solve coordination problems among a multitude of agents using a semi-decentralized model. The framework extends the multi-agent learning setup by introducing a meta-controller that guides the communication between agent pairs, enabling agents to focus on communicating with only one other agen...
متن کاملDeep Reinforcement Learning for De-Novo Drug Design
We propose a novel computational strategy based on deep and reinforcement learning techniques for de-novo design of molecules with desired properties. This strategy integrates two deep neural networks – generative and predictive – that are trained separately but employed jointly to generate novel chemical structures with the desired properties. Generative models are trained to produce chemicall...
متن کاملLearning with Opponent-Learning Awareness
Multi-agent settings are quickly gathering importance in machine learning. Beyond a plethora of recent work on deep multi-agent reinforcement learning, hierarchical reinforcement learning, generative adversarial networks and decentralized optimization can all be seen as instances of this setting. However, the presence of multiple learning agents in these settings renders the training problem no...
متن کاملMulti-task learning with deep model based reinforcement learning
In recent years, model-free methods that use deep learning have achieved great success in many different reinforcement learning environments. Most successful approaches focus on solving a single task, while multi-task reinforcement learning remains an open problem. In this paper, we present a model based approach to deep reinforcement learning which we use to solve different tasks simultaneousl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.09894 شماره
صفحات -
تاریخ انتشار 2016